Liu Z*, Li Y-R*, Yang Y*, Zhu Y, Yuan W, Hoffman T, Wu Y, Zhu E, Zarubova J, Shen J, Nan H, Yeh K-W, Hasani-Sadrabadi MM, Zhu Y, Fang Y, Ge X, Li Z, Soto J, Hsiai T, Yang L# and Li S#. (*Co-first authors; #Co-corresponding authors). Viscoelastic synthetic antigen-presenting cells for augmenting the potency of cancer therapies. Nat. Biomed. Eng. 2024, October 25. doi: 10.1038/s41551-024-01272-w. Online ahead of print. [Nature Biomedical Engineering PDF]
Zhu E*, Yu J*, Li, Y-R, Ma F, Wang Y-C, Liu Y, Li M, Kim YJ, Zhu Y, Hahn Z, Zhou Y, Brown J, Zhang Y, Pellegrini M, Hsiai T, Yang L* and Huang Y#. (*Co-first authors; #Co-corresponding authors). Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for developing T cell-based therapies. Nat. Nanotechnol. 2024, September 23. doi: 10.1038/s41565-024-01781-4. Online ahead of print. [Nature Nanotechnology PDF][UCLA Life Sciences News PDF][UCLA Health News PDF][UCLA BSCRC News PDF][UCLA CNSI News PDF][AAAS EurekAlert! PDF]
Zhou K*, Sahakyan T*, Chen Y*, Halladay T, Dawson N, Semaan S, Guo F, Mendis A, Song A, Jazari MB, Ma T, Li Y-R# and Yang L#. (*Co-first authors; #Co-corresponding authors). Targeting tumor microenvironment for advanced cancer therapy. IntechOpen Book. 2024, September 18. DOI: 10.5772/intechopen.1004392. [IntechOpen PDF]
Zhu E, Li Y-R, Margolis S, Wang J, Wang K, Zhang Y, Wang S, Park J, Zheng C, Yang L, Chu A, Zhang Y, Gao L, and Hsiao TK. Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multiorgan imaging. View. 2024, Sep 3. doi: 10.1002/VIW.20230087. [View PDF]
Li Y-R*#, Zibai Lyu*, Yuning Chen, Ying Fang, and Yang L#. (*Co-first authors; #Co-corresponding authors). Frontiers in CAR-T cell therapy for autoimmune diseases. Trends Pharmacol Sci. 2024, Aug 14: S0165-6147(24)00147-0. doi: 10.1016/j.tips.2024.07.005. Online ahead of print. [Trends in Pharmacological Sciences PDF]
Li Y-R*, Zhou Y*, Yu J*, Kim YJ, Li M, Lee D, Zhou K, Chen Y, Zhu Y, Wang Y-C, Li Z, Yu Y, Dunn ZS, Guo W, Cen X, Husman T, Bajpai A, Kramer A, Wilson M, Fang Y, Huang J, Li S, Zhou Y, Zhang Y, Hahn Z, Zhu E, Ma F, Pan C, Lusis AJ, Zhou JJ, Seet CS, Kohn DB, Wang P, Zhou XJ, Pellegrini M, Puliafito BR, Larson SM, and Yang L. (*Co-first authors) Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nat. Biotechnol. 2024, May 14. doi: 10.1038/s41587-024-02226-y. Online ahead of print. [Nature Biotechnology PDF][Nature Biotechnology News & Views PDF][Nature Portfolio PDF][UCLA Newsroom PDF][UCLA Health News PDF][UCLA BSCRC News PDF][Bioquick News PDF]
Li Y-R, Zhou Y, Yu J, Zhu Y, Lee D, Zhu E, Li Z, Kim YJ, Zhou K, Fang Y, Lyu Z, Zhen Y, Tian Y, Huang J, Cen X, Husman T, Cho JM, Hsiai T, Zhou JJ, Wang P, Puliafito BR, Larson SM, and Yang L. Engineering allorejection-resistant CAR-NKT cells from hematopoietic stem cells for off-the-shelf cancer immunotherapy. Mol Ther. 2024 Apr 6: S1525-0016(24)00221-1. doi: 10.1016/j.ymthe.2024.04.005. Online ahead of print. [Molecular Therapy PDF]
Li Y-R*#, Halladay T*, and Yang L#. (*Co-first authors; #Co-Corresponding authors) Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci. 2024, 31(1):5. doi: 10.1186/s12929-024-00998-8. [Journal of Biomedical Science PDF]
Lee D*, Dunn ZS*, Guo W*, Rosenthal CJ, Penn NE, Yu Y, Zhou K, Li Z, Ma F, Li M, Song T-C, Cen X, Li Y-R, Zhou JJ, Pellegrini M, Wang P, and Yang L. (*Co-first authors) Unlocking the potential of allogeneic Vδ2 T cells for ovarian cancer therapy through CD16 biomarker selection and CAR/IL-15 engineering. Nat Commun. 2023, 14(1):6942. doi: 10.1038/s41467-023-42619-2. [Nature Communications PDF][UCLA News PDF][Springer Nature Blog PDF]
Li Y-R*, Ochoa CJ*, Zhu Y, Kramer A, Wilson M, Fang Y, Chen Y, Singh T, Di Bernardo G, Zhu E, Lee D, Moatamed NA, Bando J, Zhou JJ, Memarzadeh S#, and Yang L#. (*Co-first authors; #Co-corresponding authors) Profiling ovarian cancer tumor and microenvironment during disease progression for cell-based immunotherapy design. iScience. 2023, 26:107952. doi: 10.1016/j.isci.2023.107952. [iScience PDF][UCLA News PDF]
Wang S*, Cui Q*, Abiri P, Roustaei M, Zhu E, Li Y-R, Wang K, Duarte S, Yang L, Ebrahimi R, Bersohn M, Chen J, and Hsiai TK. (*Co-first authors) A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci Adv. 2023, 9:eadj0540. doi: 10.1126/sciadv.adj0540. [Science Advances PDF]
Li Y-R#, Lyu Z, Tian Y, Fang Y, Zhu Y, Chen Y, and Yang L#. (#Co-corresponding authors) Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Mol Ther Oncolytics. 2023, 31:100733. doi: 10.1016/j.omto.2023.100733. [Molecular Therapy Oncolytics PDF]
Li Y-R*#, Fang Y*, Lyu Z, Zhu Y, and Yang L#. (*Co-first authors; #Co-corresponding authors) Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med. 2023, 21(1):686. doi: 10.1186/s12967-023-04575-9. [Journal of Translational Medicine PDF]
Zhu E*, Liu Y*, Huang J, Zhang A, Peng B, Liu Z, Liu H, Yu J, Li Y-R, Yang L, Duan X, and Huang Y. (*Co-first authors) Bubble-mediated large-scale hierarchical assembly of ultrathin Pt nanowire network monolayer at gas/liquid interfaces. ACS Nano. 2023, 17:14152-14160. doi: 10.1021/acsnano.3c04771.[ACS Nano PDF]
Li Y-R*, Dunn ZS*, Yu Y, Li M, Wang P#, and Yang L#.(*Co-first authors; #Co-corresponding authors) Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell. 2023, 30(5):592-610. doi: 10.1016/j.stem.2023.02.009. [Cell Stem Cell PDF]
Fang Y*, Zhu Y*, Kramer A, Chen Y, Li Y-R#, and Yang L#.(*Co-first authors; #Co-corresponding authors) Graft-versus-host disease modulation by innate T cells. Int J Mol Sci. 2023, 24(4):4084. doi: 10.3390/ijms24044084. [International Journal of Molecular Sciences PDF]
Li Y-R*, Zhou K*, Wilson M, Kramer A, Zhu Y, Dawson N, and Yang L. (*Co-first authors) Mucosal-associated invariant T cells for cancer immunotherapy. Mol Ther. 2022, Dec 5:S1525-0016(22)00677-3. doi: 10.1016/j.ymthe.2022.11.019. [Molecular Therapy PDF]
Li Y-R*, Wilson M*, and Yang L. (*Co-first authors) Target tumor microenvironment by innate T cells. Front Immunol. 2022, 13:999549. doi: 10.3389/fimmu.2022.999549. [Frontiers in Immunology PDF]
Brown J, Li Z, Wang X, Kim YJ, Wang Y-C, Zuo Y, Hong W, Wang P, Li B*, and Yang L*. (*Co-corresponding authors) Nanoformulation improves antitumor efficacy of MAOI immune checkpoint blockade therapy without causing aggression-related side effects. Front Pharmacol. 2022, 13:970324. doi: 10.3389/fphar.2022.970324. [Frontiers in Pharmacology PDF]
Li Y-R*, Zeng S*, Dunn ZS, Zhou Y, Li Z, Yu J, Wang Y-C, Ku J, Cook N, Kramer A, and Yang L. (*Co-first authors) Off-the-shelf third-party HSC-engineered iNKT cells for ameliorating GvHD while preserving GvL effect in the treatment of blood cancers. iScience. 2022, 25(9):104859. doi: 10.1016/j.isci.2022.104859. [iScience PDF][UCLA News PDF]
Li Y-R, Zhou Y, Wilson M, Kramer A, Hon R, Zhu Y, Fang Y, and Yang L. Tumor-localized administration of α-GalCer to recruit invariant natural killer T cells and enhance their antitumor activity against solid tumors. Int J Mol Sci. 2022, 23(14):7547. doi: 10.3390/ijms23147547. [International Journal of Molecular Sciences PDF]
Zhou Y*, Husman Tiffany*, Cen X, Tsao T, Brown J, Bajpai A, Li M, Zhou K, and Yang L. (*Co-first authors). Interleukin 15 in cell-based cancer immunotherapy. Int J Mol Sci. 2022, 23(13):7311. doi: 10.3390/ijms23137311. [International Journal of Molecular Sciences PDF]
Lee D, Rosenthal CJ, Penn NE, Dunn ZS, Zhou Y, and Yang L. Human γδ T cell subsets and their clinical applications for cancer immunotherapy. Cancers. 2022, 14(12):3035. doi: 10.3390/cancers14123005. [Cancers PDF]
Li Y-R, Brown J, Yu Y, Lee D, Zhou K, Dunn ZS, Hon R, Wilson M, Kramer A, Zhu Y, Fang Y, and Yang L. Targeting immunosuppressive tumor-associated macrophages using innate T cells for enhanced antitumor reactivity. Cancers. 2022, 14(11):2749. doi: 10.3390/cancers14112749. [Cancers PDF]
Li Y-R*, Yu Y*, Kramer A, Hon R, Wilson M, Brown J, and Yang L. (*Co-first authors). An ex vivo 3D tumor microenvironment-mimicry culture to study TAM modulation of cancer immunotherapy. Cells. 2022, 11(9):1583. doi: 10.3390/cells11091583. [Cells PDF]
Zhou Y*, Li M*, Zhou K*, Brown J, Tsao T, Cen X, Husman T, Baipai A, Dunn ZS, and Yang L. (*Co-first authors). Engineering induced pluripotent stem cells for cancer immunotherapy. Cancers. 2022, 14(9):2266. doi: 10.3390/cancers14092266. [Cancers PDF]
Yang L. Q&A. Cell Rep Med. 2022, 3:100616. doi: 10.1016/j.xcrm.2022.100616. [Cell Reports Medicine PDF]
Dunn ZS, Li Y-R, Yu Y, Lee D, Gibbons A, Kim JJ, Zhou TY, Li M, Nguyen M, Cen X, Zhou Y, Wang P, and Yang L. Minimally invasive preclinical monitoring of the peritoneal cavity tumor microenvironment. Cancers. 2022, 14(7):1775. doi: 10.3390/cancers14071775. [Cancers PDF]
Li Y-R, Dunn ZS, Garcia Jr. G, Carmona C, Zhou Y, Lee D, Yu J, Huang J, Kim JT, Arumugaswami V, Wang P, and Yang L. Development of off-the-shelf hematopoietic stem cell-engineered invariant natural killer T cells for COVID-19 therapeutic intervention. Stem Cell Res Ther. 2022, 13(1):112. doi: 10.1186/s13287-022-02787-2. [Stem Cell Research & Therapy PDF] [UCLA Blog PDF]
Brown J§, Li B§*, and Yang L*. (§Co-first authors; *Co-Corresponding authors). MAOI antidepressants: could they be a next-generation ICB therapy? Front Immunol. 2022, 13:853624. doi: 10.3389/fimmu.2022.853624. [Frontiers in Immunology PDF]
Nesterenko PA, McLaughlin J, Tsai BL, Sojo GB, Cheng D, Zhao D, Mao Z, Bangayan NJ, Obusan MB, Su Y, Ng RH, Chour W, Xie J, Li Y-R, Lee D, Noguchi M, Carmona C, Phillips JW, Kim JT, Yang L, Heath JR, Boutros PC, and Witte ON. HLA-A*02:01 restricted T cell receptors against the highly conserved SARS-CoV-2 polymerase cross-react with human coronaviruses. Cell Rep. 2021, 37(13):110167. doi: 10.1016/j.celrep.2021.110167. [Cell Reports PDF]
Li Y-R*, Dunn ZS*, Zhou Y, Lee D, and Yang L. (*Co-first authors). Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells. 2021, 10(12):3497. doi: 10.3390/cells10123497. [Cells PDF]
doi: 10.1016/j.trecan.2021.08.004.
Li Y-R*, Zhou Y*, Kim Y, Zhu Y, Ma F, Yu J, Wang Y-C, Chen X, Li Z, Zeng S, Wang X, Lee D, Ku J, Tsao T, Hardoy C, Huang J, Cheng D, Montel-Hagen A, Seet CS, Crooks GM, Larson SM, Sasine JP, Wang X, Pellegrini M, Ribas A, Kohn DB, Witte O, Wang P, and Yang L. (*Co-first authors). Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell Rep Med. 2021, 2(11):100449. doi: 10.1016/j.xcrm.2021.100449. [Cell Reports Medicine PDF][UCLA News PDF][BSCRC News PDF][JCCC News PDF][Life Sciences News PDF][Science Daily PDF][CIRM Blog PDF]
Methods for studying mouse and human invariant natural killer T cells. Methods Mol Biol. 2021; 2388: 35-57. doi: 10.1007/978-1-0716-1775-5_4. [Methods in Molecular Biology PDF]
Targeting monoamine oxidase A for T cell-based cancer immunotherapy. Sci Immunol. 2021, 6:eabh2383. doi: 10.1126/sciimmunol.abh2383. [Science Immunology PDF][Science Magazine News PDF][UCLA News PDF][CBS News PDF][NBC News PDF][Fierce Biotech News PDF][Drug Target Review News PDF]
Li B* and Yang L*. (Co-corresponding authors). Creatine in T cell antitumor immunity and cancer immunotherapy. Nutrients. 2021, 13(5):1633. doi: 10.3390/nu13051633. [Nutrients PDF]
Li Z, Lee D, Zeng S, and Yang L. Successes and challenges of NKT cell immunotherapy: breaking tolerance to cancer resistance. In: Successes and Challenges of NK Immunotherapy. Academic Press: Elsevier. Book 2021, Pages 63-80. [Book Link][Chapter 4 Link PDF]
Di Biase S*, Ma X*, Wang X, Yu J, Wang Y-C, Smith DJ, Zhou Y, Li Z, Kim YJ, Clarke N, To A, and Yang L. (*Co-first authors). Creatine uptake regulates CD8 T cell antitumor immunity. J Exp Med. 2019, 216(12): 2869-2882. doi: 10.1084/jem.20182044. [JEM PDF][UCLA News PDF][UC News PDF][MedicalXpress PDF][ScienceDaily PDF][The Medical News PDF][Technology Networks PDF]
Zhu Y*, Smith DJ*, Zhou Y, Li YR, Yu J, Lee D, Wang Y-C, Di Biase S, Wang Xi, Hardoy C, Ku J, Tsao T, Lin LJ, Pham AT, Moon H, McLaughlin J, Cheng D, Hollis RP, Campo-Fernandez B, Urbinati F, Wei L, Pang L, Rezek V, Berent-Maoz B, Macabali MH, Gjertson D, Wang X, Galic Z, Kitchen SG, An DS, Hu-Lieskovan S, Kaplan-Lefko PJ, De Oliveira SN, Seet CS, Larson SM, Forman SJ, Heath JR, Zack JA, Crooks GM, Radu GR, Ribas A, Kohn DB, Witte ON, and Yang L. (*Co-first authors). Development of hematopoietic stem cell-engineered invariant natural killer T cell therapy for cancer. Cell Stem Cell. 2019, 25(4):542-557. doi: 10.1016/j.stem.2019.08.004. [Cell Stem Cell PDF][CSC Highlight PDF][UCLA BSCRC News PDF][UCLA Health News PDF][Medical News Today PDF][SciTechDaily PDF][The Stem Cell Podcast PDF]
Puig-Saus C, Parisi G, Garcia-Diaz A, Krystofinski PE, Sandoval S, Zhang R, Champhekar AS, McCabe J, Cheung-Lau GC, Truong NA, Vega-Crespo A, Komenan MDS, Pang J, Macabali MH, Saco JD, Goodwin JL, Bolon B, Seet CS, Montel-Hagen A, Crooks GM, Hollis RP, Campo-Fernandez B, Bischof D, Cornetta K, Gschweng EH, Adelson C, Nguyen A, Yang L, Witte ON, Baltimore D, Comin-Anduix B, Kohn DB, Wang X, Cabrera P, Kaplan-Lefko PJ, Berent-Maoz B, and Ribas A. IND-enabling studies for a clinical trial to genetically program a persistent cancer-targeted immune system. Clin Cancer Res. 2019, 25(3):1000-1011. doi: 10.1158/1078-0432.CCR-18-0963. [Clinical Cancer Research PDF]
Bethune MT§, Li XH§, Yu J§, McLaughlin J, Cheng D, Mathis C, Moreno BH, Woods K, Knights AJ, Garcia-Diaz A, Wong S, Hu-Lieskovan S, Saus CP, Cebon J, Ribas A, Yang L*, Witte ON*, and Baltimore D*. (§Co-first authors; *Co-corresponding authors). Isolation and characterization of NY-ESO-1-specific T cell receptors restricted on various MHC molecules. Proc Natl Acad Sci U S A. 2018, 115(45): E107002-E10711. doi: 10.1073/pnas.1810653115. [PNAS PDF]
Siegler EL, Zhu Y, Wang P*, and Yang L*. (*Co-corresponding authors). Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell. 2018, 23(8):160-161. doi: 10.1016/j.stem.2018.07.007. [Cell Stem Cell PDF]
Nowicki TS, Escuin-Ordinas H, Avramis E, Chmielowski B, Chodon T, Berent-Maoz B, Wang X, Kaplan-Lefko P, Yang L, Baltimore D, Economou JS, Ribas A, and Comin-Anduix B. Characterization of postinfusion phenotypic differences in fresh versus cryopreserved TCR engineered adoptive cell therapy products. J Immunother. 2018, 41(5):248-259. doi: 10.1097/CJI.0000000000000216. [Journal of Immunotherapy PDF]
Li B*, Wang X*, Choi I, Liu S, Pham A, Moon H, Rao DS, Boldin MP, and Yang L. (*Co-first authors). miR-146a modulates autoreactive CD4 T cell Th17 differentiation and regulates T cell-mediated autoimmunity. J Clin Invest. 2017, 127(10):3702-3716. doi: 10.1172/JCI94012. [Journal of Clinical Investigation PDF]
Kim JT, Liu Y, Kulkarni RP, Lee KK, Dai BB, Lovely G, Ouyang Y, Wang P, Yang L, and Baltimore D. Dendritic cell-targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation. Sci Immunol. 2017, 2:eaal1329. doi: 10.1126/sciimmunol.aal1329. [Science Immunology PDF]
Smith DJ, Lin LJ, Moon H, Pham AT, Wang X, Liu S, Ji S, Rezek V, Shimizu S, Ruiz M, Lam J, Janzen DM, Memarzadeh S, Kohn DB, Zack JA, Kitchen SG, An DS, and Yang L. Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cells Dev. 2016, 25(24):1863-1873. doi: 10.1089/scd.2016.0193. [Stem Cells and Development PDF]
Smith DJ, Liu S, Ji S, Li B, McLaughlin J, Cheng D, Witte ON, and Yang L. Genetic Engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc Natl Acad Sci U S A. 2015, 112(5):1523-1528. doi: 10.1073/pnas.1424877112. [PNAS PDF][Hematopoiesis News TOP STORY]
Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M, Ng C, Avramis E, Seja E, Villanueva A, McCannel TA, Ishiyama A, Czernin J, Radu CG, Wang X, Gjertson DW, Cochran AJ, Cornetta K, Wong DJL, Kaplan-Lefko P, Hamid O, Samlowski W, Cohen PA, Daniels GA, Mukherji B, Yang L, Zack JA, Kohn DB, Heath JR, Glaspy JA, Witte ON, Baltimore D, Economou JS, and Ribas A. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res. 2014, 20(9): 2457-2465. doi: 10.1158/1078-0432.CCR-13-3017. [Clinical Cancer Research PDF]
Yang L* and Wang P. (*Co-corresponding author). Passive immunization against HIV/AIDS by antibody gene transfer. Viruses. 2014, 6(2): 428-447. doi: 10.3390/v6020428. [Viruses PDF]
Hur EM, Patel SN, Shimizu S, Rao D, Gnanapragasam PNP, An DS, Yang L*, and Baltimore D*. (*Co-corresponding authors). Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood. 2012, 120(23): 4571-4582. doi: 10.1182/blood-2012-04-422303. [Blood PDF]
Yu KK, Aguilar K, Tsai J, Galimidi R, Gnanapragasam P, Yang L, and Baltimore D. Use of mutated self-cleaving 2A peptides as a molecular rheostat to direct simultaneous formation of membrane and secreted anti-HIV immunoglobulins. PLoS One. 2012, 7(11):e50438. doi: 10.1371/journal.pone.0050438. [PLoS One PDF]
Yang L*, Boldin MP, Yu Y, Liu CS, Ea CK, Taganov KD, Zhao JL, and Baltimore D*. (*Co-corresponding authors). miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012, 209(9): 1655-1670. doi: 10.1084/jem.20112218. [Journal of Experimental Medicine PDF]
Xiao L, Kim J, Lim M, Dai B, Yang L, Reed S, Baltimore D, and Wang P. A TLR4 agonist synergizes with dendritic cell-directed lentiviral vectors for inducing antigen-specific immune responses. Vaccine. 2012, 30(15): 2570-2581. doi: 10.1016/j.vaccine.2012.01.074. [Vaccine PDF]
Balazs AB, Chen J, Hong CM, Rao DS, Yang L, and Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2011, 481(7379): 81-84. doi: 10.1038/nature10660. [Nature PDF]
Yang L*, Yu Y, Kalwani M, Tseng TW, and Baltimore D*. (*Co-corresponding authors). Homeostatic cytokines orchestrate the segregation of CD4 and CD8 memory T-cell reservoirs in mice. Blood. 2011, 118(11): 3039-3050. doi: 10.1182/blood-2011-04- 349746. [Blood PDF]
Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, and Baltimore D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011, 208(6): 1189-1201. doi: 10.1084/jem.20101823. [Journal of Experimental Medicine PDF]
Luo XM, Lei MY, Feidi RA, West AP Jr, Balazs AB, Bjorkman PJ, Yang L*, and Baltimore D*. (*Co-corresponding authors). Dimeric 2G12 as a potent protection against HIV-1. PLoS Pathog. 2010, 6(12): e1001225. doi: 10.1371/journal.ppat.1001225. [PLoS Pathogens PDF]
O’Connell RM, Balazs AB, Rao DS, Kivork C, Yang L*, and Baltimore D*. (*Co-corresponding authors). Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. PLoS One. 2010, 5(8): e12009. doi: 10.1371/journal.pone.0012009. [PLoS One PDF]
Baltimore D, Witte ON, Yang L, Economou J, and Ribas A. Overcoming barriers to programming a therapeutic cellular immune response to fight melanoma. Pigment Cell Melanoma Res. 2010, 23(2): 288-289. doi: 10.1111/j.1755-148X.2010.00666.x. [Pigment Cell & Melanoma Research PDF]
Dai B, Yang L, Yang H, Hu B, Baltimore D, and Wang P. HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc Natl Acad Sci U S A. 2009, 106(48): 20382-20387. doi: 10.1073/pnas.0911742106. [PNAS PDF]
Luo XM, Maarschalk E, O’Connell RM, Wang P, Yang L*, and Baltimore D*. (*Co-corresponding authors). Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood. 2009, 113(7): 1422-1431. doi: 10.1182/blood-2008-09-177139. [Blood PDF]
Ziegler L, Yang L, Joo Ki, Yang H, Baltimore D, and Wang P. Targeting lentiviral vectors to antigen-specific immunoglobulins. Hum Gene Ther. 2008, 19(9): 861-872. doi: 10.1089/hum.2007.149. [Human Gene Therapy PDF]
Chhabra A, Yang L, Wang P, Comin-Anduix B, Das R, Chakraborty NG, Ray S, Mehrotra S, Yang H, Hardee CL, Hollis R, Dorsky DI, Koya R, Kohn DB, Ribas A, Economou JS, Baltimore D, and Mukherji B. CD4+CD25- T cells transduced to express MHC class I-restricted epitope-specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model. J Immunol. 2008, 181(2): 1063-1070. doi: 10.4049/jimmunol.181.2.1063. [Journal of Immunology PDF]
Yang L*, Yang H*, Rideout K, Cho T, Joo KI, Ziegler L, Elliot A, Walls A, Yu D, Baltimore D§, and Wang P§. (*Co-first authors; §Co-corresponding authors). Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol. 2008, 26(3): 326-334. doi: 10.1038/nbt1390. [Nature Biotechnology PDF]
Yang L, Bailey L, Baltimore D*, and Wang P*. (*Co-corresponding authors). Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci U S A. 2006, 103(31): 11479-11484. doi: 10.1073/pnas.0604993103. [PNAS PDF]
Yang L and Baltimore D. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc Natl Acad Sci U S A. 2005, 102(12): 4518-4523. doi: 10.1073/pnas.0500600102. [PNAS PDF]
Bridges R, Rigero B, Byrnes E, Yang L, and Walker A. Central infusions of the recombinant human prolactin receptor antagonist, S179D-PRL, delay the onset of maternal behavior in steroid-primed, nulliparous female rats. Endocrinology. 2001, 142(2): 730-739. doi: 10.1210/endo.142.2.7931. [Endocrinology PDF]
Yang L, Kuo CB, Liu Y, Coss D, Xu X, Chen C, Oster-Granite ML, and Walker AM. Administration of unmodified prolactin (U-PRL) and a molecular mimic of phosphorylated prolactin (PP-PRL) during rat pregnancy provides evidence that the U-PRL:PP-PRL ratio is crucial to the normal development of pup tissues. J Endocrinol. 2001, 168(2): 227-238. doi: 10.1677/joe.0.1680227. [Journal of Endocrinology PDF]
Coss D, Yang L, Kuo CB, Xu X, Luben RA, and Walker AM. Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am J Physiol Endocrinol Metab. 2000, 279(6): E1216-E1225. doi: 10.1152/ajpendo.2000.279.6.E1216. [Endocrinology and Metabolism PDF]
Coss D, Kuo CB, Yang L, Ingleton P, Luben R, and Walker AM. Dissociation of Janus kinase 2 and signal transducer and activator of transcription 5 activation after treatment of Nb2 cells with a molecular mimic of phosphorylated prolactin. Endocrinology. 1999, 140(11): 5087-5094. doi: 10.1210/endo.140.11.7104. [Endocrinology PDF]